<u>Chapter 17</u> Understanding Organic Redox Reactions and Preparing for the ACS Exam

Key Concepts

When the net number of bonds to OXYGEN or a halogen INCREASE, and/or when the net number of bonds to hydrogen decrease, a molecule is said to be OXIDIZED. When the net number of bonds to oxygen (or a halogen) is REDUCED (and/or the number of bonds to hydrogen is increased), the substance is said to be REDUCED.

A recognizable pattern for many common oxidizing agents is that they have a significant number of oxygen atoms, and therefore, the central atom has a very positive oxidation number. (Examples include H_2CrO_4 , $NaCr_2O_7$, $KMnO_4$, OsO_4 , and HIO_4 .) When a large central atom (one with 5 or 6 shells) has a high oxidation number, it oxidizes an organic molecule to the next highest oxidation state. When the oxidizing agent contains a smaller central atom with a high oxidation number, it is more aggressive and so it moves a sample 2 oxidation levels.

What You Need To Learn, Understand, and Apply

- 1. How to determine when an organic reaction involves oxidation or reduction.
- How to predict the outcomes of common organic reactions that cause reduction to occur, including those that use each of the following reactants: H₂ with Pt, Pd or Ni; Lindlar's reagent; Raney nickel; Na or Li with NH₃; NaBH₄ or LiAlH₄; and NH₂NH₂ with hydroxide.
- How to predict the outcomes of common organic reactions that cause oxidation to occur, including those that use each of the following reactants: Chromium(VI) (such as Na₂Cr₂O₇, H₂CrO₄, and PCC); Manganese(VII) (KMnO₄); I(VII) (HIO₄); Osmium(VIII) (OsO₄); and O₃.
- 4. How to protect a functional group from oxidation while reacting another.
- 5. How to predict radical-based reactions of alkanes/alkyl groups.
- 6. How to work multi-step synthesis reactions.
- 7. How to prepare for the ACS Examination in Organic Chemistry.